Code No. : 22705

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (EEE: CBCS) II-Semester Main Examinations, July-2017

(Power Systems & Power Electronics)

Modern Control Theory

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Write short note on Single input and Single output systems (SISO).
- 2. Explain controllable companion forms.
- 3. What is phase plane analysis?
- 4. Briefly discuss isocline method.
- 5. Discuss generation of Liapunov functions.
- 6. Define concept of stability.
- 7. Write notes on Formulation of optimal control problems.
- 8. Discuss about behavior of dynamic systems.
- 9. Sketch the block diagram of adaptive control system.
- 10. Explain the importance of Liapunov stability theory in adaptive control.

Part-B (5 × 10 = 50 Marks)

11. a) Is the following system completely state controllable?

$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} =$	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	-2	$\begin{bmatrix} -2\\ 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$	$+\begin{bmatrix} 2\\ 0 \end{bmatrix}_{\mathcal{U}}$ [V	$Y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
x3.	1	0	$-1 x_{3}$		$ \int - [1 \ 1 \ 0] \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} $

b) Examine the observability of the given system.

$\begin{bmatrix} x_1 \end{bmatrix}$	0	1	$0][x_1][0]$		1	x_1]
\dot{x}_2 :	= 0	0	$ \begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $	U=AX+BU,	$[Y] = [3 \ 4 \ 1]$	$x_2 = CX$
$\lfloor \dot{x}_3 \rfloor$	Lo	-2	$-3 [x_3] [1]$			x 3.

- 12. a) Describe in detail about Jump resonance with neat diagram
 - b) Write short notes on the following:
 - i) Measurement of time on phase plane trajectories.
 - ii) Sub harmonic oscillations.
- 13. a) List out the characteristics of Liapunov's first method.

b) Consider a non-linear system described by the equations:

 $\dot{x}_1 = -3x_1 + x_2$

$$\dot{x}_2 = -x_1 + x_2 x_2^3$$

By using the Krasoviskii's method, investigate the stability of the system.

[5]

[5]

[5]

[3]

[2]

[5]

[5]

	Code No. :	44/05
14.	 a) Explain Jacobi bellman equation & Potryagins minimum principle in detail. b) Consider a system described by the equations [x₁] = [0 1] [x₁] + [0] 1 x₁(0) = x₂(0) = 1 Chose the feedback law u = -x₁ - kx₂ Find the value of k so that J = 1/2 ∫₀[∞] (x₁² + x₂²) dt is minimized. 	[5]
15.	a) Explain M/T rule and Liapunov stability theory in adaptive control.b) Drive the identification of the dynamic characteristics of the plant.	[5] [5]
16.	a) Describe the determination of matrix K using Ackermanns formula technique by pole placement method.b) Discuss the place place place placement is the placement of the placeme	[5]
17.	b) Discuss the phase plane analysis by singular points method.Answer any <i>two</i> of the following:	[5]
	a) Discuss about variable gradient method.	[5]
	 b) Find the optimal control value using Hamiltonian method J(x) = ∫₀^{π/4}(x₁² + x₂² + x₁x₂)dt The boundary conditions are x₁(0) = 0; x₁(π/4) = 1; x₂(0) = 0; x₂(π/4) = -1 c) Explain adaptive control system using Liapunov stability theorem. 	[5]
	cscscscscs	[5]

:: 2 ..

do No

. 22705